MetENP: MetENPWeb & Jupyter Notebook

An R package and web application for metabolomics enrichment and pathway analysis in <u>Metabolomics Workbench</u>

PI: Shankar Subramaniam

Kumari Sonal Choudhary, Eoin Fahy, Kevin Coakley, Sumana Srinivasan, Mano R Maurya, Manish Sud, Shankar Subramaniam

NIH CFDE DCC Tools August 4, 2022

Funding: NIH Common Fund, NIH grant U2C-DK119886, and CFDE program

https://www.biorxiv.org/content/10.1101/2020.11.20.391912v1

MetENP is a R package that enables detection of significant metabolites from metabolite information (names or names and concentration along with metadata information). MetENP provides enrichment score of metabolite classes, maps to pathway of the species of choice, calculates enrichment score of pathways, plots the pathways and shows the metabolite increase or decrease, and extracts and presents reaction, gene and enzyme information.

MetENP is available as a R package (https://github.com/metabolomicsworkbench/MetENP), Jupyter notebook

(https://github.com/metabolomicsworkbench/MetENP/blob/main/vignettes/MetENP_vignette_Jupyter_n_otebook.ipynb) and

web resource (https://www.metabolomicsworkbench.org/data/analyze.php).

A tutorial for the web-version is available at https://www.metabolomicsworkbench.org/data/MW-MetENP-demo.pdf. A vignette is available at https://github.com/metabolomicsworkbench/MetENP/tree/main/vignettes.

How to use MetENPWeb: Steps

Example 1. Datasets already on Metabolomics Workbench

Click on Analyze Studies

Study selection

https://www.metabolomicsworkbench.org/data/analyze.php

Analyze Studies

Analyze studies using Jupyter Notebooks or the following online tools.

MS/NMR studies identifying named metabolites

Select a study for analysis:

ST001140: Changes in the Canine Plasma Lipidome after Short- and Long-Term Exces... (Life Sciences Institute, National University of Singapore)

Submit

Analysis tools may also be accessed from within each study page using the 'Perform statistical analysis' link

Choose study

Comparative analysis across studies

- Perform meta-analysis on selected studies (compare ratios of 2 selected metabolites)
- Compare list of metabolites in 2 selected studies (all analyses)
- Compare list of metabolites in 2 selected studies (individual analyses)

MS untargeted experiments containing unidentified ions

- · Search Untargeted MS data by m/z, retention time, instrumentation
- · Superimpose unknown m/z on RefMet mass defect plot

Perform data analysis on user-uploaded data

• Load and analyze your own dataset

Select MetENP

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- Perform Linear discriminant analysis
- Perform Partial least-squares discriminant analysis (PLS-DA)

Classification and feature analysis

- Perform OPLS-DA and VIP projection
- Random Forest and VIP projection

MetaBatch Omic Browser (MD Anderson Cancer Center)

(Clustered Heat Maps, PCA+, UMAP, box plot, violin plot, and other visualizations)

- Load this study 🗗
- Load this analysis (AN001870) &

MetENP: Metabolite enrichment and species-specific pathway annotation

- MetENPWeb analysis
- MetENP R package
- MetENP tutorial

Mapping metabolites to human biochemical pathways

- Map study metabolites to HMDB and KEGG pathways
- Map study metabolites to pathways with ratio/t-test data

Select analysis and factor column

Direct URL: https://www.metabolomicsworkbench.org/data/analysis_factor.php?STUDY_ID=ST001140

Overv	Upload / Manage Studies Browse / Search Studies Analyze Studies Data Sharing Policy Tutorials FAQ
С	se a analysis:
Hi	ou can either select all, or use ctrl + select to choose multiple
S	t all
	pholipids, Chol. esters and Diacylglycerols
S	golipids
D	atized Spingosine-1-phosphates

Check the experimental factors of this study in the table below. The first column is grouped (combined) factors and subsequent columns are individual factors

	combined_factors	TreatmentGroup	TreatmentDuration	SamplingTimePoint
[TreatmentGroup:Prednisolone TreatmentDuration:0d SamplingTimePoint:before	Prednisolone	0d	before
2	TreatmentGroup:Prednisolone TreatmentDuration:4d SamplingTimePoint:after	Prednisolone	4d	after
[TreatmentGroup:Tetracosactide TreatmentDuration:00w SamplingTimePoint:before	Tetracosactide	00w	before
4	TreatmentGroup:Tetracosactide TreatmentDuration:25w SamplingTimePoint:after	Tetracosactide	25w	after

Choose factor column:

Take a hint from the table above

Parameters

Results

For any difficulty in running the application, contact Mano Maurya (mano@sdsc.edu) or Sumana Srinivasan (susrinivasan@eng.ucsd.edu).

Visualization Plots

Visualization Plots

Pathway- Metabolite network

Visualization Plots

Other Tools

Overview Upload / Manage Data Browse / Search Studies Analyze Studies Tutorials FAQ

Statistics Toolbox for Study: ST000915

Title: Biomarkers of NAFLD progression: a lipidomics approach to an epi

Select a dataset: Core G Fatty acids/Eicosanoids >

Run analyses on data in Study ST000915 Dataset: Core G Fatty acids/Eicosanoids

Metabolite classes (all analyses combined)

- · Pie chart of metabolite super classes
- · Pie chart of metabolite main classes
- · Pie chart of metabolite sub classes

Normalization and averaging

- Perform sample normalization / Show metabolite averages / Run cluster analysis
- · Perform analyte scaling on data
- · Create Relative log abundance plots

Univariate analysis

- Perform multi-condition dot plot analysis
- · Perform Volcano plot analysis
- Perform ANOVA analysis

Clustering and correlation

- Perform hierarchial or heatmap cluster analysis
- Perform Clustered correlation analysis
- Perform Network analysis on correlated metabolites (mapped to classification)
- Perform Network analysis on correlated metabolites (mapped to fold-change)

Multivariate analysis

- Perform Principal component analysis
- · Perform Linear discriminant analysis

Volcano Plot analysis for Study ST000915

(Analysis All analyses used)

Select one or more experimental factors for Groups 1 and 2. The members of each group should be DIFFERENT.

Group1	Experimental factor	Group2				
	Diagnosis:Normal (31)	$\overline{\mathbf{V}}$				
	Diagnosis:Steatosis (17)					
	Diagnosis:NASH (20)					
✓	Diagnosis:Cirrhosis (20)					
P-value cutoff: 0.1 V Fold-change cutoff: 1.1 V Sample normalization: Mean V						
Group by metabolite classification: Sub class V Use: Submitted metabolite names V						
Maximum # of (most significant) metabolites per class to use in pvalue group calculation:						
Analysis: Core G Fatty acids/Eicosanoids ∨ Combine data for all analyses?: ✓ Run Volcano Plot						

Experimental factors selected in each group Group1: Diagnosis: Cirrhosis Group2: Diagnosis: Normal

Volcano plot of all significant metabolites

Bubble plot of results grouped by metabolite class

Enrichment by metabolite class

Barplot of significant metabolites by metabolite class

User dataset

Example 2. Custom dataset

Click on Analyze Studies

https://www.metabolomicsworkbench.org/data/analyze.php

Perform data analysis on user-uploaded data

Load and analyze your own dataset

Load and analyze your own dataset by MetENP New!

Click here

Data Upload

Input file structure of metabolomics data file

Metabolomics data file. Please check here for formats of the input file:

- Metabolites names in 1st column
- Sample names in 1st column

The second example file is taken from Metaboanalyst &

Example upload

Please check the data format of your file.

- ☐ Sample names in 1st column
- ✓ Metabolites names in 1st column

Start Upload

Input file structure of metabolomics data file

Metabolomics data file. Please check here for formats of the input file:

- Metabolites names in 1st column
- Sample names in 1st column

The second example file is taken from Metaboanalyst &

After you hit 'Start Upload' button, you can run the whole analysis like in Example 1

MetENP Jupyter notebook available on GitHub

Unix command to clone MetENP: git clone https://github.com/metabolomicsworkbench/MetENP.git MetENP

MetENP on Mybinder

Search/find the studies of interest on the MW website, then use Jupyter notebook to do custom analysis related to that study. Example study: https://www.metabolomicsworkbench.org/data/DRCCMetadata.php?Mode=Study&StudyID=ST000915

https://mybinder.org/v2/gh/metabolomicsworkbench/MetENP/test01?filepath=vignettes%2FMetENP_vignette_Jupyter_notebook.ipynb

Questions

For any difficulty in running the application or other questions, contact Mano Maurya (mano@sdsc.edu), Sumana Srinivasan (susrinivasan@eng.ucsd.edu) or Shankar Subramaniam (shankar@ucsd.edu).